University at Buffalo - The State University of New York
Skip to Content
The control of marine biofouling on xerogel surfaces with nanometer-scale topography. - PubMed - NCBI

Send to

Choose Destination
See comment in PubMed Commons below
Biofouling. 2011 Feb;27(2):137-49. doi: 10.1080/08927014.2010.548599.

The control of marine biofouling on xerogel surfaces with nanometer-scale topography.

Author information

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.


Mixtures of n-octadecyltrimethoxysilane (C18, 1-5 mole-%), n-octyltriethoxysilane (C8) and tetraethoxysilane (TEOS) gave xerogel surfaces of varying topography. The 1:49:50 C18/C8/TEOS xerogel formed 100-400-nm-wide, 2-7-nm deep pores by AFM while coatings with ≥3% C18 were free of such features. Segregation of the coating into alkane-rich and alkane-deficient regions in the 1:49:50 C18/C8/TEOS xerogel was observed by IR microscopy. Immersion in ASW for 48 h gave no statistical difference in surface energy for the 1:49:50 C18/C8/TEOS xerogel and a significant increase for the 50:50 C8/TEOS xerogel. Settlement of barnacle cyprids and removal of juvenile barnacles, settlement of zoospores of the alga Ulva linza, and strength of attachment of 7-day sporelings were compared amongst the xerogel formulations. Settlement of barnacle cyprids was significantly lower in comparison to glass and polystyrene standards. The 1:49:50 and 3:47:50 C18/C8/TEOS xerogels were comparable to PDMSE with respect to removal of juvenile barnacles and sporeling biomass, respectively.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center