University at Buffalo - The State University of New York
Skip to Content
Back to America: tracking the origin of European introduced populations of Quercus rubra L. - Genome
Subscriber access provided by SUNY AT BUFFALO
Login     Register     Shibboleth      Mobile      Cart

A division of Canadian Science Publishing

a not-for-profit publisher

Back to America: tracking the origin of European introduced populations of Quercus rubra L.1

Nastasia R. Merceron,ab Thibault Leroy,a Emilie Chancerel,a Jeanne Romero-Severson,c Daniel S. Borkowski,c Alexis Ducousso,a Arnaud Monty,b Annabel J. Porté,a Antoine Kremera

aBIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France.

bUniversity of Liège, Gembloux Agro-Bio Tech., Biodiversity and Landscape Unit, 2, Passage des Déportés, B-5030 Gembloux, Belgium.

cDepartment of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences Center, Notre Dame, IN 46556, USA.

Corresponding authors: Antoine Kremer (email: ); Nastasia R. Merceron (email: ).

1This paper is part of a Special Issue entitled The Evolution of Tree Diversity.

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Corresponding editor: Andrew L. Hipp

Published on the web 27 July 2017.

Received October 14, 2016. Accepted March 26, 2017.

Genome, 2017, 60(9): 778-790,


Quercus rubra has been introduced in Europe since the end of the 17th century. It is widely distributed today across this continent and considered invasive in some countries. Here, we investigated the distribution of genetic diversity of both native and introduced populations with the aim of tracing the origin of introduced populations. A large sampling of 883 individuals from 73 native and 38 European locations were genotyped at 69 SNPs. In the natural range, we found a continuous geographic gradient of variation with a predominant latitudinal component. We explored the existence of ancestral populations by performing Bayesian clustering analysis and found support for two or three ancestral genetic clusters. Approximate Bayesian Computations analyses based on these two or three clusters support recent extensive secondary contacts between them, suggesting that present-day continuous genetic variation resulted from recent admixture. In the introduced range, one main genetic cluster was not recovered in Europe, suggesting that source populations were preferentially located in the northern part of the natural distribution. However, our results cannot refute the introduction of populations from the southern states that did not survive in Europe.

Keywords: Quercus rubra, spatial genetic structure, genetic divergence, secondary contact, demographic inferences


  • Allendorf FW, Lundquist LL. 2003. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 17(1): 24-30 CrossrefOpenURL SUNY AT BUFFALO.
  • Balco G, Rovey CW. 2010. Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet. Geology 38(9): 795-798 CrossrefOpenURL SUNY AT BUFFALO.
  • Bauer, F. 1953. Die Roteiche. Edited by Sauerländer’s Verlag. Frankfurt Am Main.
  • Bauer F. 1954. Zur Rassenfrage der Roteiche. Allg. Forstzeitschrift 9: 470-474 OpenURL SUNY AT BUFFALO.
  • Beaumont MA, Zhang W, Balding DJ. 2002. Approximate Bayesian computation in population genetics. Genetics 162(4): 2025-2035 Available from MedlineOpenURL SUNY AT BUFFALO.
  • Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., and Bonhomme, F. 2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France.
  • Bigsby KM, Tobin PC, Sills EO. 2011. Anthropogenic drivers of gypsy moth spread. Biol. Invasions 13(9): 2077-2090 CrossrefOpenURL SUNY AT BUFFALO.
  • Birchenko I, Feng Y, Romero-Severson J. 2009. Biogeographical distribution of chloroplast diversity in northern red oak (Quercus rubra L.) Am. Midl. Nat. 161(1): 134-145 CrossrefOpenURL SUNY AT BUFFALO.
  • Blackburn TM, Lockwood JL, Cassey P. 2015. The influence of numbers on invasion success. Mol. Ecol. 24(9): 1942-1953 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Borkowski DS, Hoban SM, Chatwin WB, Romero-Severson J. 2017. Rangewide population differentiation and population substructure in Quercus rubra L. Tree Genet. Genomes 13: 67 CrossrefOpenURL SUNY AT BUFFALO.
  • Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D. 2005. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144(1): 1-11 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Buswell JM, Moles AT, Hartley S. 2011. Is rapid evolution common in introduced plant species? J. Ecol. 99(1): 214-224 CrossrefOpenURL SUNY AT BUFFALO.
  • Castric V, Bechsgaard J, Schierup MH, Vekemans X. 2008. Repeated adaptive introgression at a gene under multiallelic balancing selection. PLoS Genet. 4(8): e1000168 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Charlesworth B. 2009. Fundamental concepts in genetics: Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10(3): 195-205 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Charlesworth B, Nordborg M, Charlesworth D. 1997. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res. 70(2): 155-174 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Chen C, Durand E, Forbes F, François O. 2007. Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol. Ecol. 7: 747-756 CrossrefOpenURL SUNY AT BUFFALO.
  • Clout MN, Russell JC. 2008. The invasion ecology of mammals: a global perspective. Wildl. Res. 35(3): 180-184 CrossrefOpenURL SUNY AT BUFFALO.
  • Colautti RI, Barrett SCH. 2013. Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342(6156): 364-366 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Cristescu ME. 2015. Genetic reconstructions of invasion history. Mol. Ecol. 24(9): 2212-2225 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Cruickshank TE, Hahn MW. 2014. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23(13): 3133-3157 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Csilléry K, Blum MGB, Gaggiotti OE, François O. 2010. Approximate Bayesian Computation (ABC) in practice. Trends Ecol. Evol. 25(7): 410-418 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Csilléry K, François O, Blum MGB. 2012. abc: an R package for approximate Bayesian computation (ABC) Methods Ecol. Evol. 3(3): 475-479 CrossrefOpenURL SUNY AT BUFFALO.
  • Daubree J, Kremer A. 1993. Genetic and phenological differentiation between introduced and natural populations of Quercus rubra L. Ann. Sci. For. 50(S1): 271s-280s CrossrefOpenURL SUNY AT BUFFALO.
  • Deneke FJ. 1974. A red oak provenance trial in Kansas. Trans. Kansas Acad. Sci. 77(3): 195 CrossrefOpenURL SUNY AT BUFFALO.
  • Desprez-Loustau M-L, Robin C, Buée M, Courtecuisse R, Garbaye J, Suffert F, et al. 2007. The fungal dimension of biological invasions. Trends Ecol. Evol. 22(9): 472-480 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Dlugosch KM, Parker IM. 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17(1): 431-449 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Durand E, Jay F, Gaggiotti OE, Francois O. 2009. Spatial inference of admixture proportions and secondary contact zones. Mol. Biol. Evol. 26(9): 1963-1973 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Durka W, Bossdorf O, Prati D, Auge H. 2005. Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol. Ecol. 14(6): 1697-1706 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Ehrenfeld JG. 2010. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41(1): 59-80 CrossrefOpenURL SUNY AT BUFFALO.
  • Estoup A, Guillemaud T. 2010. Reconstructing routes of invasion using genetic data: Why, how and so what? Mol. Ecol. 19(19): 4113-4130 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491 Available from Medline, ISIOpenURL SUNY AT BUFFALO.
  • Facon B, Genton BJ, Shykoff J, Jarne P, Estoup A, David P. 2006. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21(3): 130-135 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • François O, Ancelet S, Guillot G. 2006. Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174(2): 805-816 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Genton BJ, Shykoff JA, Giraud T. 2005. High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol. Ecol. 14(14): 4275-4285 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Gladieux P, Zhang XG, Róldan-Ruiz I, Caffier V, Leroy T, Devaux M, et al. 2010. Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host. Mol. Ecol. 19(4): 658-674 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Goeze. 1916. Liste der seit dem 16. Jahrhundert bis auf die Gegenwart in die Gärten uns Parks Europas eingführten Bäume und Stäucher. Mitteilungen der Deutschen Dendrologischen Gesellschaft.
  • Göhre, K., and Wagenknecht, E. 1955. Die Roteiche und ihr Holz. Edited by Deutscher Bauernverlag. Berlin.
  • Hamilton JA, Okada M, Korves T, Schmitt J. 2015. The role of climate adaptation in colonization success in Arabidopsis thaliana. Mol. Ecol. 24(9): 2253-2263 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Hoban SM, Borkowski DS, Brosi SL, McCleary TS, Thompson LM, McLachlan JS, et al. 2010. Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: a product of range shifts, not ecological marginality or recent population decline. Mol. Ecol. 19(22): 4876-4891 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Hudson RR. 2002. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18(2): 337-338 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Hulme PE. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46(1): 10-18 CrossrefOpenURL SUNY AT BUFFALO.
  • Jombart T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11): 1403-1405 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Jombart T, Ahmed I. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27(21): 3070-3071 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Jones RAC. 2009. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 141(2): 113-130 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Keller SR, Taylor DR. 2010. Genomic admixture increases fitness during a biological invasion. J. Evol. Biol. 23(8): 1720-1731 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Konar A, Choudhury O, Bullis R, Fiedler F, Kruser JM, Stephens MT, et al. 2017. High-quality genetic mapping with ddRADseq in the non-model tree Quercus rubra. BMC Genomics 18: 417 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Kremer A, Kleinschmit J, Cottrell J, Cundall EP, Deans JD, Ducousso A, et al. 2002. Is there a correlation between chloroplastic and nuclear divergence, or what are the roles of history and selection on genetic diversity in European oaks? For. Ecol. Manage. 156(1–3): 75-87 CrossrefOpenURL SUNY AT BUFFALO.
  • Kriebel H. 1993. Intraspecific variation of growth and adaptive traits in North American oak species. Ann. Sci. For. 50: 153s-165s CrossrefOpenURL SUNY AT BUFFALO.
  • Kriebel HB, Bagley WT, Deneke FJ, Funsch RW, Roth P, Jokela JJ, et al. 1976. Geographic variation in Quercus rubra in north central United States plantations. Silvae Genet. 25(3–4): 118-122 OpenURL SUNY AT BUFFALO.
  • Kriebel HB, Merritt C, Stadt T. 1988. Genetics of growth rate in Quercus rubra: provenance and family effects by the early third decade in the north central U.S.A. Silvae Genet. 37: 193-198 OpenURL SUNY AT BUFFALO.
  • Lanier L, Keller R, Kremer A. 1980. Le Chêne rouge (Quercus rubra L.) en France. Rev. For. Française 32(5): 419 CrossrefOpenURL SUNY AT BUFFALO.
  • Laricchia KM, McCleary TS, Hoban SM, Borkowski D, Romero-Severson J. 2015. Chloroplast haplotypes suggest preglacial differentiation and separate postglacial migration paths for the threatened North American forest tree Juglans cinerea L. Tree Genet. Genomes 11(2): 30 CrossrefOpenURL SUNY AT BUFFALO.
  • Lavergne S, Molofsky J. 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. U.S.A. 104(10): 3883-3888 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Lehe R, Hallatschek O, Peliti L. 2012. The rate of beneficial mutations surfing on the wave of a range expansion. PLoS Comput. Biol. 8(3): e1002447 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Leprieur F, Beauchard O, Blanchet S, Oberdorff T, Brosse S. 2008. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biol. 6(2): e28 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Leroy T, Le Cam B, Lemaire C. 2014. When virulence originates from non-agricultural hosts: new insights into plant breeding. Infect. Genet. Evol. 27: 521-529 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Leroy T, Roux C, Villate L, Bodénès C, Romiguier J, Paiva JAP, et al. 2017. Extensive recent secondary contacts between four European white oak species. New Phytol. 214(2): 865-878 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Magni CR, Ducousso A, Caron H, Petit RJ, Kremer A. 2005. Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol. Ecol. 14(2): 513-524 Crossref, Medline, ISIOpenURL SUNY AT BUFFALO.
  • Magni Diaz, C.R. 2004. Reconstitution de l’introduction de Quercus rubra L. en Europe et conséquences génétiques dans les populations allochtones. Thèse de doctorat, Ecole Nationale du Génie Rural des Eaux et Forêts, Paris, France.
  • Major KC, Nosko P, Kuehne C, Campbell D, Bauhus J. 2013. Regeneration dynamics of non-native northern red oak (Quercus rubra L.) populations as influenced by environmental factors: a case study in managed hardwood forests of southwestern Germany. For. Ecol. Manage. 291: 144-153 CrossrefOpenURL SUNY AT BUFFALO.
  • Mariette S, Cottrell J, Csaikl UM, Goikoechea P, König A, Lowe AJ, et al. 2002. Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Genet. 51(2–3): 72-79 OpenURL SUNY AT BUFFALO.
  • Maron JL, Vilà M, Bommarco R, Elmendorf S, Beardsley P. 2004. Rapid evolution of an invasive plant. Ecol. Monogr. 74(2): 261-280 Crossref, ISIOpenURL SUNY AT BUFFALO.
  • Miller JR. 2010. Survival of mutations arising during invasions. Evol. Appl. 3(2): 109-121 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Miura O. 2007. Molecular genetic approaches to elucidate the ecological and evolutionary issues associated with biological invasions. Ecol. Res. 22(6): 876-883 CrossrefOpenURL SUNY AT BUFFALO.
  • Palmer EJ. 1942. The Red Oak complex in the United States. Am. Midl. Nat. 27(3): 732-740 CrossrefOpenURL SUNY AT BUFFALO.
  • Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research — an update. Bioinformatics 28(19): 2537-2539 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Pejchar L, Mooney HA. 2009. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24(9): 497-504 Crossref, Medline, ISIOpenURL SUNY AT BUFFALO.
  • Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, et al. 2002a. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For. Ecol. Manage. 156(1–3): 49-74 CrossrefOpenURL SUNY AT BUFFALO.
  • Petit RJ, Csaikl UM, Bordács S, Burg K, Coart E, Cottrell J, et al. 2002b. Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. For. Ecol. Manage. 156: 5-26 Crossref, ISIOpenURL SUNY AT BUFFALO.
  • Petit RJ, Latouche-Hallé C, Pemonge M-H, Kremer A. 2002c. Chloroplast DNA variation of oaks in France and the influence of forest fragmentation on genetic diversity. For. Ecol. Manage. 156(1–3): 115-129 CrossrefOpenURL SUNY AT BUFFALO.
  • Pyšek, P., and Jarošík, V. 2005. Residence time determines the distribution of alien plants. In Invasive plants: ecological and agricultural aspects. Birkhäuser-Verlag, Basel. pp. 77–96. 10.1007/3-7643-7380-6_5. Crossref
  • Pyšek P, Richardson DM. 2010. Invasive species, environmental change, and health. Annu. Rev. Environ. Resour. 35: 25-55 CrossrefOpenURL SUNY AT BUFFALO.
  • Pyšek P, Křivánek M, Jarošik V. 2009. Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90(10): 2734-2744 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Pyšek P, Jarosik V, Hulme PE, Kühn I, Wild J, Arianoutsou M, et al. 2010. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl. Acad. Sci. 107(27): 12157-12162 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. Available from OpenURL SUNY AT BUFFALO
  • Reichard SH, White P. 2001. Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51(2): 103 Crossref, ISIOpenURL SUNY AT BUFFALO.
  • Richardson DM, Carruthers J, Hui C, Impson FAC, Miller JT, Robertson MP, et al. 2011. Human-mediated introductions of Australian acacias — a global experiment in biogeography. Divers. Distrib. 17(5): 771-787 CrossrefOpenURL SUNY AT BUFFALO.
  • Rius M, Darling JA. 2014. How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol. Evol. 29(4): 233-242 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Rollins LA, Moles AT, Lam S, Buitenwerf R, Buswell JM, Brandenburger CR, et al. 2013. High genetic diversity is not essential for successful introduction. Ecol. Evol. 3(13): 4501-4517 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Ross-Ibarra J, Wright SI, Foxe JP, Kawabe A, DeRose-Wilson L, Gos G, et al. 2008. Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS ONE 3(6): e2411 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Roux C, Castric V, Pauwels M, Wright SI, Saumitou-Laprade P, Vekemans X. 2011. Does speciation between Arabidopsis halleri and Arabidopsis lyrata coincide with major changes in a molecular target of adaptation? PLoS ONE 6(11): e26872 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Roux C, Tsagkogeorga G, Bierne N, Galtier N. 2013. Crossing the species barrier: genomic hotspots of introgression between two highly divergent Ciona intestinalis species. Mol. Biol. Evol. 30(7): 1574-1587 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Roux C, Fraïsse C, Romiguier J, Anciaux Y, Galtier N, Bierne N. 2016. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol. 14(12): e2000234 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, et al. 2007. Ecological and evolutionary insights from species invasions. Trends Ecol. Evol. 22(9): 465-471 Crossref, Medline, ISIOpenURL SUNY AT BUFFALO.
  • Schlarbaum SE, Bagley WT. 1981. Intraspecific genetic variation of Quercus rubra L., Northern Red Oak. Silvae Genet. 30(2–3): 50-56 OpenURL SUNY AT BUFFALO.
  • Schlarbaum SE, Adams RP, Bagley WT, Wayne WJ. 1982. Postglacial migration pathways of Quercus rubra L., northern red oak, as indicated by regional genetic variation patterns. Silvae Genet. 31: 150-158 OpenURL SUNY AT BUFFALO.
  • Simberloff D. 2009. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40(1): 81-102 CrossrefOpenURL SUNY AT BUFFALO.
  • Sork V, Huang S, Wiener E. 1993. Macrogeographic and fine-scale genetic structure in a North American oak species, Quercus rubra L. Ann. Sci. For. 50(1): 261s-270s CrossrefOpenURL SUNY AT BUFFALO.
  • Stapley J, Santure AW, Dennis SR. 2015. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 24(9): 2241-2252 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Tatem AJ, Hay SI, Rogers DJ. 2006. Global traffic and disease vector dispersal. Proc. Natl. Acad. Sci. 103(16): 6242-6247 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Timbal, J., Kremer, A., Le Goff, N., and Nepveu, G. 1994. Le chêne rouge d’Amérique. Institut National de la Recherche Agronomique, Paris.
  • Tsutsui ND, Suarez AV, Holway DA, Case TJ. 2000. Reduced genetic variation and the success of an invasive species. Proc. Natl. Acad. Sci. U.S.A. 97(11): 5948-5953 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • United States Bureau of the Census. 1975. Water transportation. In Historical statistics of the United States: Colonial times to 1970. Vol. 2. pp. 742–766. Available from OpenURL SUNY AT BUFFALO
  • Vellinga EC, Wolfe BE, Pringle A. 2009. Global patterns of ectomycorrhizal introductions. New Phytol. 181(4): 960-973 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, et al. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14(7): 702-708 Crossref, MedlineOpenURL SUNY AT BUFFALO.
  • Woziwoda B, Kopeć D, Witkowski J. 2014. The negative impact of intentionally introduced Quercus rubra L. on a forest community. Acta Soc. Bot. Pol. 83(1): 39-49 CrossrefOpenURL SUNY AT BUFFALO.
  • Xu C-Y, Tang S, Fatemi M, Gross CL, Julien MH, Curtis C, van Klinken RD. 2015. Population structure and genetic diversity of invasive Phyla canescens: implications for the evolutionary potential. Ecosphere 6(9): 1-21 CrossrefOpenURL SUNY AT BUFFALO.
  • Zanetto A, Kremer A. 1995. Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. I. Monolocus patterns of variation. Heredity 75(5): 506-517 CrossrefOpenURL SUNY AT BUFFALO.

Cited by

View all 1 citing articles

free access
The Evolution of Tree Diversity: Proceedings of the 2016 IUFRO Genomics and Forest Tree Genetics Conference, Phylogenetics and Genomic Evolution Session, Arcachon, France

Andrew L. Hipp, Santiago C. Gonzalez-Martinez, Juan P. Jaramillo-Correa

Connect With UsSign up for E-AlertsAlertsRead our BlogCSP BlogFacebookTwitterYouTubeFlickrLinked InRSS