University at Buffalo - The State University of New York
Skip to Content
Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability. - PubMed - NCBI
Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Jan 7;286(1):737-45. doi: 10.1074/jbc.M110.177006. Epub 2010 Oct 25.

Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability.

Author information

1
Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093-0687, USA.

Abstract

VEGF was first described as vascular permeability factor, a potent inducer of vascular leakage. Genetic evidence indicates that VEGF-stimulated endothelial proliferation in vitro and angiogenesis in vivo depend on heparan sulfate, but a requirement for heparan sulfate in vascular hyperpermeability has not been explored. Here we show that altering endothelial cell heparan sulfate biosynthesis in vivo decreases hyperpermeability induced by both VEGF(165) and VEGF(121). Because VEGF(121) does not bind heparan sulfate, the requirement for heparan sulfate suggested that it interacted with VEGF receptors rather than the ligand. By applying proximity ligation assays to primary brain endothelial cells, we show a direct interaction in situ between heparan sulfate and the VEGF receptor, VEGFR2. Furthermore, the number of heparan sulfate-VEGFR2 complexes increased in response to both VEGF(165) and VEGF(121). Genetic or heparin lyase-mediated alteration of endothelial heparan sulfate attenuated phosphorylation of VEGFR2 in response to VEGF(165) and VEGF(121), suggesting that the functional VEGF receptor complex contains heparan sulfate. Pharmacological blockade of heparan sulfate-protein interactions inhibited hyperpermeability in vivo, suggesting heparan sulfate as a potential target for treating hyperpermeability associated with ischemic disease.

PMID:
20974861
PMCID:
PMC3013032
DOI:
10.1074/jbc.M110.177006
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center