PHOTOBLEACHING OF PORPHYRINS USED IN PHOTODYNAMIC THERAPY AND IMPLICATIONS FOR THERAPY

Authors


Abstract

Abstract— The development of an extraction procedure to quantitate dihematoporphyrin ether (DHE) concentration in tissues correlated to fluorescence measurements from instrumentation developed for in vivo fluorimetry was examined. In vivo fluorometric results from mouse mammary carcinoma (SMT-F) were calibrated against results of the chemical extraction assay quantitated spectrophotometrically. Fluorescence and drug extractable levels increase in a linear fashion with injected dose. Loss of porphyrin fluorescence (photobleaching) and intra-tumoral porphyrin level has been demonstrated both in vitro (NHIK cells) and in vivo (SMT-F tumor) during illumination with light following exposure to Hpd or DHE. This process is essentially independent of porphyrin tumor level in vivo and could lead to tumor protection at very low porphyrin levels. On the other hand, this photobleaching process which occurs concurrent with cellular inactivation and tissue damage due to the photodynamic process can be exploited to protect normal tissue during photodynamic therapy (PDT) and thus greatly enhance the therapeutic ratio. This has been demonstrated in patients undergoing PDT.

Ancillary