Advances in Dental Research

Oral surfaces are bathed in secretory antibodies and other salivary macromolecules that are potential inhibitors of specific microbial adhesion. Indigenous Gram-positive bacteria that colonize teeth, including viridans streptococci and actinomyces, may avoid inhibition of adhesion by host secretory molecules through various strategies that involve the structural design and binding properties of bacterial adhesins and receptors. Further studies to define the interactions of these molecules within the host environment may suggest novel approaches for the control of oral biofilm formation.

Abeygunawardana C., Bush CA, Tjoa SS, Fennessey PV, McNeil MR (1989). The complete structure of the capsular polysaccharide from Streptococcus sanguis 34. Carbohydr Res 191:279-293. Google Scholar Medline
Abeygunawardana C., Bush CA, Cisar JO (1990). Complete structure of the polysaccharide from Streptococcus sanguis J22. Biochemistry 29:234-248. Google Scholar Medline
Abeygunawardana C., Bush CA, Cisar JO (1991a). Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: a receptor for lectin-mediated interbacterial adherence. Biochemistry 30:6528-6540. Google Scholar Medline
Abeygunawardana C., Bush CA, Cisar JO (1991b). Complete structure of the cell surface polysaccharide of Streptococcus oralis C104: a 600-MHz NMR study. Biochemistry 30:8568-8577. Google Scholar Medline
Abraham SN, Goguen JD, Sun D., Klemm P., Beachey EH (1987). Identification of two ancillary subunits of Escherichia coli type 1 fimbriae by using antibodies against synthetic oligopeptides of fim gene products. J Bacteriol 169:5530-5536. Google Scholar Medline
Beighton D., Whiley RA (1990). Sialidase activity of the Streptococcus milleri group and other viridans group streptococci. J Clin Microbiol 28:1431-1433. Google Scholar Medline
Beighton D., Hardie JM, Whiley RA (1991). A scheme for the identification of viridans streptococci . J Med Microbiol 35:367-372. Google Scholar Crossref, Medline
Cisar JO (1982). Coaggregation reactions between oral bacteria: studies of specific cell-to-cell adherence mediated by microbial lectins. In: Host-parasite interactions in periodontal diseases. Genco RJ, Mergenhagen SE, editors. Washington, DC: American Society for Microbiology, pp. 121-131. Google Scholar
Cisar JO (1986). Fimbrial lectins of the oral actinomyces. In: Microbial lectins and agglutinins: properties and biological activity . Mirelman D, editor. New York: John Wiley & Sons, pp. 183-196. Google Scholar
Cisar JO, Barsumian EL, Curl SH, Vatter AE, Sandberg AL, Siraganian RP (1981). Detection and localization of a lectin on Actinomyces viscosus T14V by monoclonal antibodies. J Immunol 127:1318-1322. Google Scholar Medline
Cisar JO, David VA, Curl SH, Vatter AE (1984). Exclusive presence of lactose-sensitive fimbriae on a typical strain (WVU45) of Actinomyces naeslundii. Infect Immun 46:453-458. Google Scholar Medline
Cisar JO, Brennan MJ, Sandberg AL (1985). Lectin-specific interactions of Actinomyces fimbriae with oral streptococci. In: Molecular basis of oral microbial adhesion. Mergenhagen SE, Rosan B, editors. Washington, DC: American Society for Microbiology, pp. 159-163. Google Scholar
Cisar JO, Vatter AE, Clark WB, Curl SH, Hurst-Calderone S., Sandberg AL (1988). Mutants of Actinomyces viscosus T14V lacking type 1, type 2, or both types of fimbriae. Infect Immun 56:2984-2989. Google Scholar Medline
Cisar JO, Barsumian EL, Siraganian RP, Clark WB, Yeung MK, Hsu SD, et al. (1991). Immunochemical and functional studies of Actinomyces viscosus T14V type 1 fimbriae with monoclonal and polyclonal antibodies directed against the fimbrial subunit. J Gen Microbiol 137:1971-1979. Google Scholar Crossref, Medline
Cisar JO, Sandberg AL, Abeygunawardana C., Reddy GP, Bush CA ( 1995). Lectin recognition of host-like saccharide motifs in streptococcal cell wall polysaccharides. Glycobiology 5:655-662. Google Scholar Medline
Clark WB, Wheeler TT, Cisar JO (1984). Specific inhibition of adsorption of Actinomyces viscosus T14V to saliva-treated hydroxyapatite by antibody against type 1 fimbriae. Infect Immun 43:497-501. Google Scholar Medline
Clark WB, Wheeler TT, Lane MD, Cisar JO (1986). Actinomyces adsorption mediated by type-1 fimbriae . J Dent Res 65:1166-1168. Google Scholar Medline
Cundell DR, Pearce BJ, Sandros J., Naughton AM, Masure HR (1995). Peptide permeases from Streptococcus pneumoniae affect adherence to eucaryotic cells. Infect Immun 63:2493-2498. Google Scholar Medline
Demuth DR, Golub EE, Malamud D. (1990). Streptococcal-host interactions. Structural and functional analysis of a Streptococcus sanguis receptor for a human salivary glycoprotein. J Biol Chem 265:7120-7126. Google Scholar Medline
Donkersloot JA, Cisar JO, Wax ME, Harr RJ, Chassy BM (1985). Expression of Actinomyces viscosus antigens in Escherichia coli: cloning of a structural gene (fimA) for type 2 fimbriae . J Bacteriol 162:1075-1078. Google Scholar Medline
Elder BL, Fives-Taylor P. (1986). Characterization of monoclonal antibodies specific for adhesion: isolation of an adhesin of Streptococcus sanguis FW213. Infect Immun 54:421-427. Google Scholar Medline
Fachon-Kalweit S., Elder BL, Fives-Taylor P. (1985). Antibodies that bind to fimbriae block adhesion of Streptococcus sanguis to saliva-coated hydroxyapatite. Infect Immun 48:617-624. Google Scholar Medline
Fenno JC, LeBlanc DJ, Fives-Taylor P. (1989). Nucleotide sequence analysis of a type 1 fimbrial gene of Streptococcus sanguis FW213. Infect Immun 57:3527-3533. Google Scholar Medline
Fenno JC, Shaikh A., Spatafora G., Fives-Taylor P. (1995). The fimA locus of Streptococcus parasanguis encodes an ATP-binding membrane transport system. Mol Microbiol 15:849-863. Google Scholar Medline
Fives-Taylor PM, Macrina FL, Pritchard TJ, Peene SS (1987). Expression of Streptococcus sanguis antigens in Escherichia coli: cloning of a structural gene for adhesion fimbriae. Infect Immun 55:123-128. Google Scholar Medline
Frandsen EV, Pedrazzoli V., Kilian M. (1991). Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol 6:129-133. Google Scholar Crossref, Medline
Ganeshkumar N., Song M., McBride BC (1988). Cloning of a Streptococcus sanguis adhesin which mediates binding to saliva-coated hydroxyapatite. Infect Immun 56:1150-1157. Google Scholar Medline
Ganeshkumar N., Arora N., Kolenbrander PE (1993). Saliva-binding protein (SsaB) from Streptococcus sanguis 12 is a lipoprotein. J Bacteriol 175:572-574. Google Scholar Medline
Gibbons RJ (1989). Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res 68:750-760. Google Scholar Link
Gibbons RJ, Hay DI (1988). Human salivary acidic proline-rich proteins and statherin promote the attachment of Actinomyces viscosus LY7 to apatitic surfaces . Infect Immun 56:439-445. Google Scholar Medline
Gibbons RJ, Hay DI, Cisar JO, Clark WB (1988). Adsorbed salivary proline-rich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14V-J1 on apatitic surfaces. Infect Immun 56:2990-2993. Google Scholar Medline
Gibbons RJ, Hay DI, Schlesinger DH (1991). Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect Immun 59:2948-2954. Google Scholar Medline
Heeb MJ, Costello AH, Gabriel 0 (1982). Characterization of a galactose-specific lectin from Actinomyces viscosus by a model aggregation system. Infect Immun 38:993-1002. Google Scholar Medline
Hsu SD, Cisar JO, Sandberg AL, Kilian M. (1994). Adhesive properties of viridans streptococcal species. Microb Ecol Health Dis 7:125-137. Google Scholar
Hultgren SJ, Jones CH (1995). Utility of the immunoglobulin-like fold of chaperones in shaping organelles of attachment in pathogenic bacteria. ASM News 61:457-464. Google Scholar
Hultgren SJ, Abraham S., Caparon M., Falk P., St.Geme JW, Normark S. (1993). Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73 :887-901. Google Scholar Medline
Johnson JL, Moore LV, Kaneko B., Moore WE (1990). Actinomyces georgiae sp. nov., Actinomyces gerencseriae sp. nov., designation of two genospecies of Actinomyces naeslundii, and inclusion of A. naeslundii serotypes II and III and Actinomyces viscosus serotype II in A. naeslundii genospecies 2. Int J Syst Bacteriol 40:273-286. Google Scholar
Kilian M., Nyvad B. (1990). Ability to bind salivary alpha-amylase discriminates certain viridans group streptococcal species. J Clin Microbiol 28:2576-2577. Google Scholar Medline
Kilian M., Mikkelsen L., Henrichsen J. (1989). Taxonomic study of viridans streptococci: description of Streptococcus gordonii sp. nov. and emended descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Holder 1906). Int J Syst Bacteriol 39:471-484. Google Scholar
Kolenbrander PE, Andersen RN, Moore LV (1990). Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface . Appl Environ Microbiol 56:3890-3894. Google Scholar Medline
Kolenbrander PE, Andersen RN, Ganeshkumar N. (1994). Nucleotide sequence of the Streptococcus gordonii PK488 coaggregation adhesin gene, scaA, and ATP-binding cassette. Infect Immun 62:4469-4480. Google Scholar Medline
Lee KK, Sheth HB, Wong WY, Sherburne R., Paranchych W., Hodges RS, et al. (1994). The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol Microbiol 11:705-713. Google Scholar Medline
Levine MJ, Reddy MS, Tabak LA, Loomis RE, Bergey EJ, Jones PC, et al. (1987). Structural aspects of salivary glycoproteins . J Dent Res 66:436-441. Google Scholar Link
McIntire FC, Bush CA, Wu SS, Li SC, Li YT, McNeil M., et al. (1987). Structure of a new hexasaccharide from the coaggregation polysaccharide of Streptococcus sanguis 34. Carbohydr Res 166:133-143. Google Scholar Medline
McIntire FC, Crosby LK, Vatter AE, Cisar JO, McNeil MR, Bush CA, et al. (1988). A polysaccharide from Streptococcus sanguis 34 that inhibits coaggregation of S. sanguis 34 with Actinomyces viscosus T14V. J Bacteriol 170:2229-2235. Google Scholar Medline
Morris EJ, Ganeshkumar N., Song M., McBride BC (1987). Identification and preliminary characterization of a Streptococcus sanguis fibrillar glycoprotein. J Bacteriol 169:164-171. Google Scholar Medline
Murray PA, Levine MJ, Reddy MS, Tabak LA, Bergey EJ (1986). Preparation of a sialic acid-binding protein from Streptococcus mitis KS32AR. Infect Immun 53:359-365. Google Scholar Medline
Nyvad B., Fejerskov 0 (1987). Scanning electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95:287-296. Google Scholar Medline
Nyvad B., Kilian M. (1987). Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95:369-380. Google Scholar Medline
Oligino L., Fives-Taylor P. (1993). Overexpression and purification of a fimbria-associated adhesin of Streptococcus parasanguis. Infect Immun 61:1016-1022. Google Scholar Medline
Reddy GP, Abeygunawardana C., Bush CA, Cisar JO (1994). The cell wall polysaccharide of Streptococcus gordonii 38: structure and immunochemical comparison with the receptor polysaccharides of Streptococcus oralis 34 and Streptococcus mitis J22. Glycobiology 4:183-192. Google Scholar Medline
Reinholdt J., Kilian M. (1987). Interference of IgA protease with the effect of secretory IgA on adherence of oral streptococci to saliva-coated hydroxyapatite . J Dent Res 66:492-497. Google Scholar Link
Scannapieco FA (1994). Saliva-bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med 5:203-248. Google Scholar Link
Yeung MK (1992). Conservation of an Actinomyces viscosus T14V type 1 fimbrial subunit homolog among divergent groups of Actinomyces spp. Infect Immun 60:1047-1054. Google Scholar Medline
Yeung MK (1993). Complete nucleotide sequence of the Actinomyces viscosus T14V sialidase gene: presence of a conserved repeating sequence among strains of Actinomyces spp. Infect Immun 61:109-116. Google Scholar Medline
Yeung MK (1995). Construction and use of integration plasmids to generate site-specific mutations in the Actinomyces viscosus T14V chromosome . Infect Immun 63:2924-2930. Google Scholar Medline
Yeung MK, Cisar JO (1988). Cloning and nucleotide sequence of a gene for Actinomyces naeslundii WVU45 type 2 fimbriae. J Bacteriol 170:3803-3809. Google Scholar Medline
Yeung MK, Cisar JO (1990). Sequence homology between the subunits of two immunologically and functionally distinct types of fimbriae of Actinomyces spp. J Bacteriol 172:2462-2468. Google Scholar Crossref, Medline
Yeung MK, Kozelsky CS (1994). Transformation of Actinomyces spp. by a Gram-negative broad-host-range plasmid. J Bacteriol 176:4173-4176. Google Scholar Medline

Vol 11, Issue 1, 1997

Recommended Citation


Specific Inhibitors of Bacterial Adhesion: Observations From the Study of Gram-Positive Bacteria that Initiate Biofilm Formation on the Tooth Surface

J.O. CisarLaboratory of Microbial Ecology Building 30, Room 302 National Institute of Dental Research National Institutes of Health Bethesda, Maryland 20892Y. TakahashiDepartment of Microbiology Nippon Dental University, Tokyo, JapanS. RuhlDepartment of Operative Dentistry and Periodontology University of Regensburg, GermanyJ.A. DonkerslootLaboratory of Microbial Ecology Building 30, Room 302 National Institute of Dental Research National Institutes of Health Bethesda, Maryland 20892A.L. SandbergLaboratory of Microbial Ecology Building 30, Room 302 National Institute of Dental Research National Institutes of Health Bethesda, Maryland 20892


Advances in Dental Research

Vol 11, Issue 1, pp. 168 - 175

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click on download.

Format

Download article citation data for:
J.O. Cisar, Y. Takahashi, S. Ruhl, J.A. Donkersloot, and A.L. Sandberg
Advances in Dental Research 2016 11:1, 168-175

Request Permissions

View permissions information for this article

Share

Email