University at Buffalo - The State University of New York
Skip to Content
Candida albicans flu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentration and fungicidal activity. - PubMed - NCBI
Format

Send to

Choose Destination
See comment in PubMed Commons below
Antimicrob Agents Chemother. 2013 Apr;57(4):1832-9. doi: 10.1128/AAC.02295-12. Epub 2013 Feb 4.

Candida albicans flu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentration and fungicidal activity.

Author information

1
Department of Oral Biology, University at Buffalo, Buffalo, New York, USA.

Abstract

Histatin 5 (Hst 5) is a salivary human antimicrobial peptide that is toxic to the opportunistic yeast Candida albicans. Fungicidal activity of Hst 5 requires intracellular translocation and accumulation to a threshold concentration for it to disrupt cellular processes. Previously, we observed that total cytosolic levels of Hst 5 were gradually reduced from intact cells, suggesting that C. albicans possesses a transport mechanism for efflux of Hst 5. Since we identified C. albicans polyamine transporters responsible for Hst 5 uptake, we hypothesized that one or more polyamine efflux transporters may be involved in the efflux of Hst 5. C. albicans FLU1 and TPO2 were found to be the closest homologs of Saccharomyces cerevisiae TPO1, which encodes a major spermidine efflux transporter, indicating that the products of these two genes may be involved in efflux of Hst 5. We found that flu1Δ/Δ cells, but not tpo2Δ/Δ cells, had significant reductions in their rates of Hst 5 efflux and had significantly higher cytoplasmic Hst 5 and Hst 5 susceptibilities than did the wild type. We also found that flu1Δ/Δ cells had reduced biofilm formation compared to wild-type cells in the presence of Hst 5. Transcriptional levels of FLU1 were not altered over the course of treatment with Hst 5; therefore, Hst 5 is not likely to induce FLU1 gene overexpression as a potential mechanism of resistance. Thus, Flu1, but not Tpo2, mediates efflux of Hst 5 and is responsible for reduction of its toxicity in C. albicans.

PMID:
23380720
PMCID:
PMC3623299
DOI:
10.1128/AAC.02295-12
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center