University at Buffalo - The State University of New York
Skip to Content
Carbon storage regulator A (CsrA(Bb)) is a repressor of Borrelia burgdorferi flagellin protein FlaB. - PubMed - NCBI
Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 2011 Nov;82(4):851-64. doi: 10.1111/j.1365-2958.2011.07853.x. Epub 2011 Oct 18.

Carbon storage regulator A (CsrA(Bb)) is a repressor of Borrelia burgdorferi flagellin protein FlaB.

Author information

1
Department of Oral Biology, The State University of New York at Buffalo, New York 14214, USA.

Abstract

The Lyme disease spirochete Borrelia burgdorferi lacks the transcriptional cascade control of flagellar protein synthesis common to other bacteria. Instead, it relies on a post-transcriptional mechanism to control its flagellar synthesis. The underlying mechanism of this control remains elusive. A recent study reported that the increased level of BB0184 (CsrA(Bb); a homologue of carbon storage regulator A) substantially inhibited the accumulation of FlaB, the major flagellin protein of B. burgdorferi. In this report, we deciphered the regulatory role of CsrA(Bb) on FlaB synthesis and the mechanism involved by analysing two mutants, csrA(Bb)(-) (a deletion mutant of csrA(Bb)) and csrA(Bb)(+) (a mutant conditionally overexpressing csrA(Bb)). We found that FlaB accumulation was significantly inhibited in csrA(Bb)(+) but was substantially increased in csrA(Bb)(-) . In contrast, the levels of other flagellar proteins remained unchanged. Cryo-electron tomography and immuno-fluorescence microscopic analyses revealed that the altered synthesis of CsrA(Bb) in these two mutants specifically affected flagellar filament length. The leader sequence of flaB transcript contains two conserved CsrA-binding sites, with one of these sites overlapping the Shine-Dalgarno sequence. We found that CsrA(Bb) bound to the flaB transcripts via these two binding sites, and this binding inhibited the synthesis of FlaB at the translational level. Taken together, our results indicate that CsrA(Bb) specifically regulates the periplasmic flagellar synthesis by inhibiting translation initiation of the flaB transcript.

PMID:
21999436
PMCID:
PMC3212630
DOI:
10.1111/j.1365-2958.2011.07853.x
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center