University at Buffalo - The State University of New York
Skip to Content
Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. - PubMed - NCBI
Format

Send to

Choose Destination
See comment in PubMed Commons below
J Virol. 2009 May;83(9):4092-101. doi: 10.1128/JVI.02245-08. Epub 2009 Feb 25.

Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses.

Author information

1
Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA.

Abstract

Noroviruses are the major cause of nonbacterial gastroenteritis in humans. However, little is known regarding the norovirus life cycle, including cell binding and entry. In contrast to human noroviruses, the recently discovered murine norovirus 1 (MNV-1) readily infects murine macrophages and dendritic cells in culture. Many viruses, including the related feline calicivirus, use terminal sialic acids (SA) as receptors for infection. Therefore, we tested whether SA moieties play a role during MNV-1 infection of murine macrophages. Competition with SA-binding lectins and neuraminidase treatment led to a reduction in MNV-1 binding and infection in cultured and primary murine macrophages, suggesting a role for SA during the initial steps of the MNV-1 life cycle. Because SA moieties can be attached to glycolipids (i.e., gangliosides), we next determined whether MNV-1 uses gangliosides during infection. The gangliosides GD1a, GM1, and asialo-GM1 (GA1) are natural components of murine macrophages. MNV-1 bound to ganglioside GD1a, which is characterized by an SA on the terminal galactose, but not to GM1 or asialo-GM1 in an enzyme-linked immunosorbent assay. The depletion of gangliosides using an inhibitor of glycosylceramide synthase (d-threo-P4) led to a reduction of MNV-1 binding and infection in cultured and primary murine macrophages. This defect was specifically rescued by the addition of GD1a. A similar phenotype was observed for MNV field strains WU11 (GV/WU11/2005/USA) and S99 (GV/Berlin/2006/DE). In conclusion, our data indicate that MNV can use terminal SA on gangliosides as attachment receptors during binding to murine macrophages.

PMID:
19244326
PMCID:
PMC2668497
DOI:
10.1128/JVI.02245-08
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center