University at Buffalo - The State University of New York
Skip to Content
Chemotaxis: how bacteria use memory : Biological Chemistry
Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board Member: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Sies, Helmut / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

12 Issues per year


IMPACT FACTOR 2016: 3.273

CiteScore 2016: 3.01

SCImago Journal Rank (SJR) 2016: 1.679
Source Normalized Impact per Paper (SNIP) 2016: 0.800

Online
ISSN
1437-4315
See all formats and pricing

Access brought to you by:

SUNY Buffalo Libraries

More options …
Volume 390, Issue 11 (Nov 2009)

Issues

Chemotaxis: how bacteria use memory

Nikita Vladimirov
  • Interdisziplinäres Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg (IWR), Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Victor Sourjik
  • Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-09-13 | DOI: https://doi.org/10.1515/BC.2009.130

Abstract

Bacterial chemotaxis represents one of the simplest and best studied examples of unicellular behavior. Chemotaxis allows swimming bacterial cells to follow chemical gradients in the environment by performing temporal comparisons of ligand concentrations. The process of chemotaxis in the model bacterium Escherichia coli has been studied in great molecular detail over the past 40 years, using a large range of experimental tools to investigate physiology, genetics and biochemistry of the system. The abundance of quantitative experimental data enabled detailed computational modeling of the pathway and theoretical analyses of such properties as robustness and signal amplification. Because of the temporal mode of gradient sensing in bacterial chemotaxis, molecular memory is an essential component of the chemotaxis pathway. Recent studies suggest that the memory time scale has been evolutionary optimized to perform optimal comparisons of stimuli while swimming in the gradient. Moreover, noise in the adaptation system, which results from variations of the adaptation rate both over time and among cells, might be beneficial for the overall chemotactic performance of the population.

Keywords: adaptation; Escherichia coli; optimal memory

About the article

Corresponding author


Received: 2009-05-11

Accepted: 2009-07-01

Published Online: 2009-09-13

Published in Print: 2009-11-01


Citation Information: Biological Chemistry, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/BC.2009.130.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tomohiro Iida, Yoko Iwata, Tatsuma Mohri, Shoji A. Baba, and Noritaka Hirohashi
Scientific Reports, 2017, Volume 7, Number 1
[3]
Cristina García-Fontana, José Antonio Reyes-Darias, Francisco Muñoz-Martínez, Carlos Alfonso, Bertrand Morel, Juan Luis Ramos, and Tino Krell
Journal of Biological Chemistry, 2013, Volume 288, Number 26, Page 18987
[4]
Chi Zhang, Rongjing Zhang, and Junhua Yuan
Physical Review E, 2017, Volume 95, Number 6
[5]
Yuval Hart, Avraham E. Mayo, Oren Shoval, Uri Alon, and Sui Huang
PLoS ONE, 2013, Volume 8, Number 3, Page e57455
[6]
Bo Hu, Yuhai Tu, and Ned S. Wingreen
PLoS Computational Biology, 2014, Volume 10, Number 6, Page e1003672
[7]
Anna Krembel, Remy Colin, Victor Sourjik, and Christopher V. Rao
PLOS ONE, 2015, Volume 10, Number 12, Page e0145582
[8]
Diana Clausznitzer, Olga Oleksiuk, Linda Løvdok, Victor Sourjik, Robert G. Endres, and Christopher V. Rao
PLoS Computational Biology, 2010, Volume 6, Number 5, Page e1000784
[9]
Silke Neumann, Nikita Vladimirov, Anna K. Krembel, Ned S. Wingreen, Victor Sourjik, and Eric Cascales
PLoS ONE, 2014, Volume 9, Number 1, Page e84904
[10]
Pranesha Prabhakaran, Muhammad Aqeel Ashraf, and Wan Syaidatul Aqma
RSC Adv., 2016, Volume 6, Number 111, Page 109862
[11]
Hossein Mohammadi, Banafsheh Esckandariun, and Ali Najafi
Journal of Physics: Condensed Matter, 2017, Volume 29, Number 1, Page 015102
[12]
L. Xu, L. Xin, Y. Zeng, J. K. H. Yam, Y. Ding, P. Venkataramani, Q. W. Cheang, X. Yang, X. Tang, L.-H. Zhang, K.-H. Chiam, L. Yang, and Z.-X. Liang
Science Signaling, 2016, Volume 9, Number 450, Page ra102
[13]
Sutharsan Govindarajan and Orna Amster-Choder
Current Opinion in Microbiology, 2016, Volume 33, Page 83
[14]
Ricard Solé
Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, Volume 371, Number 1701, Page 20150438
[15]
František Baluška and Michael Levin
Frontiers in Psychology, 2016, Volume 7
[16]
Johannes Loehr, Daniel Pfeiffer, Dirk Schüler, and Thomas M. Fischer
Soft Matter, 2016, Volume 12, Number 15, Page 3631
[17]
Ricard Solé, Daniel R. Amor, Salva Duran-Nebreda, Núria Conde-Pueyo, Max Carbonell-Ballestero, and Raúl Montañez
Biosystems, 2016, Volume 148, Page 47
[18]
Sophie Cesbron, Martial Briand, Salwa Essakhi, Sophie Gironde, Tristan Boureau, Charles Manceau, Marion Fischer-Le Saux, and Marie-Agnès Jacques
Frontiers in Plant Science, 2015, Volume 6
[19]
Ophelia S. Venturelli, Robert G. Egbert, and Adam P. Arkin
Journal of Molecular Biology, 2016, Volume 428, Number 5, Page 928
[21]
Akatsuki Kimura, Antonio Celani, Hiromichi Nagao, Timothy Stasevich, and Kazuyuki Nakamura
Frontiers in Physiology, 2015, Volume 6
[22]
Sarah R. Stockwell, Christian R. Landry, and Scott A. Rifkin
Mol. BioSyst., 2015, Volume 11, Number 1, Page 28
[23]
Hagai Shemesh, Ofer Ovadia, and Ariel Novoplansky
Plant Signaling & Behavior, 2010, Volume 5, Number 11, Page 1501
[24]
C. Garcia-Fontana, A. Corral Lugo, and T. Krell
Science Signaling, 2014, Volume 7, Number 320, Page ra34
[25]
Katie L. Vermillion, Kevin A. Lidberg, and Laura S. Gammill
The Journal of Cell Biology, 2014, Volume 204, Number 1, Page 95
[26]
Bridget R Kulasekara, Cassandra Kamischke, Hemantha D Kulasekara, Matthias Christen, Paul A Wiggins, and Samuel I Miller
eLife, 2013, Volume 2
[27]
Gil Ariel, Adi Shklarsh, Oren Kalisman, Colin Ingham, and Eshel Ben-Jacob
New Journal of Physics, 2013, Volume 15, Number 12, Page 125019
[28]
E. J. Marsden, C. Valeriani, I. Sullivan, M. E. Cates, and D. Marenduzzo
Soft Matter, 2014, Volume 10, Number 1, Page 157
[29]
Joel A. Cain, Nestor Solis, and Stuart J. Cordwell
Journal of Proteomics, 2014, Volume 97, Page 265
[30]
Yingxue Qin, Qingpi Yan, Yongquan Su, Haiping Li, and Wenzheng Zou
Acta Oceanologica Sinica, 2013, Volume 32, Number 8, Page 55
[32]
Yiling Yang and Victor Sourjik
Molecular Microbiology, 2012, Volume 86, Number 6, Page 1482
[33]
Nachiket D. Kashikar, Luis Alvarez, Reinhard Seifert, Ingo Gregor, Oliver Jäckle, Michael Beyermann, Eberhard Krause, and U. Benjamin Kaupp
The Journal of Cell Biology, 2012, Volume 198, Number 6, Page 1075
[34]
Silke Neumann, Karin Grosse, and Victor Sourjik
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 30, Page 12159
[35]
M. D. Lazova, T. Ahmed, D. Bellomo, R. Stocker, and T. S. Shimizu
Proceedings of the National Academy of Sciences, 2011, Volume 108, Number 33, Page 13870
[36]
J.-B. Masson, G. Voisinne, J. Wong-Ng, A. Celani, and M. Vergassola
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 5, Page 1802
[37]
D. Kanungpean, T. Kakuda, and S. Takai
Microbiology, 2011, Volume 157, Number 5, Page 1279
[38]
Bruno Müller and Ueli Grossniklaus
Journal of Proteomics, 2010, Volume 73, Number 11, Page 2054
[39]
A. Celani, T. S. Shimizu, and M. Vergassola
Journal of Statistical Physics, 2011, Volume 144, Number 2, Page 219
[40]
Fredrik C. Størmer, Ivar Mysterud, and Tore Slagsvold
Medical Hypotheses, 2011, Volume 76, Number 6, Page 901
[41]
Olga Oleksiuk, Vladimir Jakovljevic, Nikita Vladimirov, Ricardo Carvalho, Eli Paster, William S. Ryu, Yigal Meir, Ned S. Wingreen, Markus Kollmann, and Victor Sourjik
Cell, 2011, Volume 145, Number 2, Page 312
[42]
Gerald L Hazelbauer and Wing-Cheung Lai
Current Opinion in Microbiology, 2010, Volume 13, Number 2, Page 124
[43]
Nadia Mhedbi-Hajri, Armelle Darrasse, Sandrine Pigné, Karine Durand, Stéphanie Fouteau, Valérie Barbe, Charles Manceau, Christophe Lemaire, and Marie-Agnès Jacques
BMC Evolutionary Biology, 2011, Volume 11, Number 1
[44]
Helmut Sies
Biological Chemistry, 2009, Volume 390, Number 11
[45]
Steven L. Porter, George H. Wadhams, and Judith P. Armitage
Nature Reviews Microbiology, 2011, Volume 9, Number 3, Page 153
[46]
Karl-Josef Dietz, Jean-Pierre Jacquot, and Gary Harris
New Phytologist, 2010, Volume 188, Number 4, Page 919
[47]
Jesús Lacal, Cristina García-Fontana, Francisco Muñoz-Martínez, Juan-Luis Ramos, and Tino Krell
Environmental Microbiology, 2010, Volume 12, Number 11, Page 2873
[48]
Linda I. Hu, Bruno P. Lima, and Alan J. Wolfe
Molecular Microbiology, 2010, Volume 77, Number 1, Page 15
[49]
Victor Sourjik and Judith P Armitage
The EMBO Journal, 2010, Volume 29, Number 16, Page 2724

Comments (0)

Please log in or register to comment.
Log in