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Objectives: Testing the effect of Photodynamic Therapy (PDT) on 

bioadhesion strength to titanium substrata as a method of cleaning 

biomaterial surface by examining whether the detachment shear 

stress would be affected by prior PDT treatment independently from 

microbial viability 

Methods: Biofilms of Streptococcus mutans (ATCC strain 27351) 

were grown with sucrose addition to Brain Heart Infusion media, 

initiating the biofilms with bacteria of three different ages (phases). 

One set of biofilm samples received no PDT (controls); another set 

received methylene-blue-mediated PDT. A water-jet impingement 

apparatus was used to determine the adhesive strength of biofilms to 

the titanium substrata. Scanning electron microscopy (SEM) was 

performed to obtain images of the samples before and after jet 

impingement.  Replicate biofilms prepared on germanium prisms were 

characterized by MAIR-infrared spectroscopy. 

Results: PDT’d microbial biofilms were significantly (p<0.05) and 

differentially delaminated and ultimately removed from their substrata 

biomaterials by the hydrodynamic forces of water-jet impingement. 

Control (no PDT) biofilms of varying thicknesses required 144-228 

dynes/cm² shear stress to delaminate from titanium, while PDT’d 

biofilms were removed at 90-140 dynes/cm², depending on water flow 

rate.  However, separation of microbial layers from the exopolymer 

matrix required only 57-68 dynes/cm² shear stress (controls) and 39-

51 dynes/cm²  (PDT’d biofilms), again depending on water flow rate. 

The thicker areas of biofilms had greater susceptibility to detachment 

by water–jet impingement. MAIR-IR spectra of replicate biofilms and 

SEM images of control and PDT’d biofilms confirmed these findings. 

Colony-forming-unit (CFU) counts routinely correlated well with results 

from a spectrophotometric Alamar Blue (AB) assay, except at long 

incubation times when the AB reagents showed some autoreduction-

induced color changes. 

Conclusion: These results are consistent with proposals that 

methylene-blue-mediated PDT induces oxidative embrittlement and 

fragmentation of biofilm matrix biopolymers, allowing easier release by 

hydrodynamic (rinsing) forces. 

In dental settings, as well as in other natural systems, plaque-
forming microorganisms develop biofilms in which the microbes 
become protected via their own phenotypic changes and their 
polymeric exudates from disinfection by washes and antibiotics. 
Photodynamic Therapy (PDT) is variably effective against these 
microorganisms, depending on such factors as whether the 
bacteria are Gram positive or Gram negative, plaque age and 
thickness, and internal biofilm oxygen concentration.  
This investigation applied a novel combination of PDT and water-jet 
impingement techniques to Streptococcus mutans (ATCC strain 
27351)-formed biofilms on commercially pure titanium (cpTi) 
starting with three different phases (ages) of the bacteria, to 
examine whether the detachment shear stress –as a signature for 
the work required for removal of the biofilms- would be affected by 
prior PDT treatment independently from microbial viability. 

These results are consistent with proposals that PDT induces 
oxidative embrittlement and fragmentation of plaque/biofilm matrix 

biopolymers, allowing easier release by hydrodynamic (rinsing) 
forces. 
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In the preliminary testing on a biofilm grown on germanium prisms having surface properties similar to those of cp Ti , Multiple Attenuated 
Internal Reflection InfraRed spectra results showed differences in film-removal susceptibility for shear stresses as low as 10 dynes/cm², and 
illustrated the PDT-induced preferential removal of predominantly the polysaccharide biofilm components (Graph 1). After testing on cp Ti, it 
was discovered in this work that PD-treated microbial biofilms, independently from starting or PS-influenced microorganism viability, were 
significantly (p<0.05) and differentially delaminated and ultimately removed from their substrata biomaterials by the hydrodynamic forces of 
water-jet impingement (Figure 4). Control biofilms of varying thickness, not receiving PDT treatment, required between 144 and 228 
dynes/cm² of shear stress to delaminate from titanium while PDT-treated companion biofilms were removed at 90 to 140 dynes/cm², 
depending on water flow rate. In comparison, it required only between 57 and 68 dynes/cm² shear stress to separate microbial layers from 
within the exopolymer matrix of control biofilms, and between 39 and 51 dynes/cm² to delaminate PDT-treated matrix sections of varying 
thickness biofilms, again depending on water flow rate (Table 1). Scanning Electron Microscopy of Control and PDT-treated biofilms before and 
after water-jet impingement confirmed these findings (Figure 5). 

Biofilms were grown with sucrose addition to Brain Heart Infusion media on Germanium prisms and cp Ti, producing visible 
thick films and nearly invisible thin films (within the same piece) having the same numbers of culturable microorganisms, 
the thicker films having greater susceptibility to detachment by water–jet impingement (Figure 1). Colony-forming-unit 
(CFU) counts routinely correlated well with results from a spectrophotometric Alamar Blue (AB) assay (Figure 2), except at 
long incubation times when the AB reagents showed some autoreduction-induced color changes. Use of Methylene Blue 
(MB) as a photosensitizer (PS) for PDT of biofilms (delivered by Periowave laser system Figure 3) did not interfere with the 
AB assay but did mask AB reduction spectral changes when employed with planktonic organisms.  
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Fig. 2: Methods; 

A: arrangement of Ti pieces        

     for treatment. 

B: adding photosensitizer. 

C: illuminating procedure. 

E & F: transferring the 

solution to be read by the 

spectrophotometer and 

compare readings  
Fig. 3: Periowave System 

Fig.1: Component of jet impingement; A: complete set, 

B: the sample laying flat with pre determined distance 

from the nozzle opening, C: delivering needles with a 

variety of diameters and lengths and syringes 

Fig. 5: A and C are SEM image of the central area of the detached circle in a control biofilm with different 

magnifications. B and D are the center of detached circle in PDT (MB) treated biofilm. Note the difference 

in bacterial count. Both biofilms were grown under the same conditions by receiving 24 hrs bacteria at 

the initial adhesion. 

Graph 1: Treated biofilm:  black (lower spectrum) is the treated biofilm; blue (upper spectrum) 

is the same sample after water impinging. This biofilm was initiated by 48 hrs bacteria.  

Table 1: Shear stress values for biofilm grown from younger bacteria: 

txhal20 txcen20 con.cen.20 con.hal.20 tx.cen.10 con.cen.10 tx.hal.10 con.hal.10 

N Valid 23 26 26 22 17 12 21 13 

Mean dyne/cm² 51.0 89.4 134.3 67.2 139.4 226.3 38.9 56.8 

Std. 

Deviation 
1.5 13.9 27.5 13.7 70.4 26.5 21.6 17.7 

Fig. 4: Even when central circles and halos are almost equal in size in control (right) and 
treated biofilms (left), the water jet penetrates deeper through the treated biofilm. 


